Treffer: Process industry scheduling optimization using genetic algorithm and mathematical programming.

Title:
Process industry scheduling optimization using genetic algorithm and mathematical programming.
Authors:
Oliveira, F.1 fabricio.carlos.oliveira@gmail.com, Hamacher, S.1 hamacher@puc-rio.br, Almeida, M.2 mayron@petrobras.com.br
Source:
Journal of Intelligent Manufacturing. Oct2011, Vol. 22 Issue 5, p801-813. 13p.
Database:
Business Source Premier

Weitere Informationen

This article addresses the problem of scheduling in oil refineries. The problem consists of a multi-product plant scheduling, with two serial machine stages-a mixer and a set of tanks-which have resource constraints and operate on a continuous flow basis. Two models were developed: the first using mixed-integer linear programming (MILP) and the second using genetic algorithms (GA). Their main objective was to meet the whole forecast demand, observing the operating constraints of the refinery and minimizing the number of operational changes. A real-life data-set related to the production of fuel oil and asphalt in a large refinery was used. The MILP and GA models proved to be good solutions for both primary objectives, but the GA model resulted in a smaller number of operational changes. The reason for this is that GA incorporates a multi-criteria approach, which is capable of adaptively updating the weights of the objective throughout the evolutionary process. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Intelligent Manufacturing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)