Treffer: Generalizing Random Butterfly Transforms to Arbitrary Matrix Sizes.
Weitere Informationen
Parker and Lê introduced random butterfly transforms (RBTs) as a preprocessing technique to replace pivoting in dense LU factorization. Unfortunately, their FFT-like recursive structure restricts the dimensions of the matrix. Furthermore, on multinode systems, efficient management of the communication overheads restricts the matrix's distribution even more. To remove these limitations, we have generalized the RBT to arbitrary matrix sizes by truncating the dimensions of each layer in the transform. We expanded Parker's theoretical analysis to generalized RBT, specifically that in exact arithmetic, Gaussian elimination with no pivoting will succeed with probability 1 after transforming a matrix with full-depth RBTs. Furthermore, we experimentally show that these generalized transforms improve performance over Parker's formulation by up to 62% while retaining the ability to replace pivoting. This generalized RBT is available in the SLATE numerical software library. [ABSTRACT FROM AUTHOR]
Copyright of ACM Transactions on Mathematical Software is the property of Association for Computing Machinery and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)