Treffer: A novel collaborative iterative greedy algorithm for hybrid flowshop scheduling problem with batch processing machines and variable sublots.
Weitere Informationen
Lot streaming technology enables continuous overlapping operations, which is of great significance in shortening production cycles, reducing unnecessary waiting time, and increasing production capacity. However, the capacity constraint of batch processing machines may lead to inevitable variations in sublots. Therefore, the key focus of our research is to control variations of sublot for maximising benefits. In view of this, we investigate a hybrid flowshop scheduling problem (HFSP) with batch processing machines and variable sublots (HFSP-BVS) integrating sequence-dependent setup times and transportation times. To address HFSP-BVS, a MILP model is first established, and a novel collaborative iterative greedy (NCIG) algorithm is proposed to optimise the cumulative payoffs associated with delivery dates. In NCIG, a collaborative initialisation method by extracting good information from an archive is proposed, and a specific destruction-reconfiguration strategy is designed to control the variations of sublots in the batch processing stage. Furthermore, a dynamic acceptance criterion is designed to balance the algorithm's exploitation and exploration capabilities. Lastly, we conduct comparisons between the NCIG algorithm and five other metaheuristic algorithms on 100 test instances. The results show that NCIG outperforms them by 1.89% and 61.42% on average in terms of the total penalty and RPI values, respectively. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Production Research is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)