Treffer: Optimized wavelet and feature set of EEG signal for Parkinson disease classification.

Title:
Optimized wavelet and feature set of EEG signal for Parkinson disease classification.
Authors:
Arunkumar, N.1 (AUTHOR) arun.bio@rathinam.in, Nagaraj, Balakrishnan2 (AUTHOR), Keziah, M. Ruth3 (AUTHOR)
Source:
Journal of Intelligent & Fuzzy Systems. 2024, Vol. 46 Issue 4, p9271-9290. 20p.
Database:
Business Source Premier

Weitere Informationen

Parkinson disease (PD) is a type of neurodegenerative disorder that affects the motor movement of the patient. But each technique has its own advantages or disadvantages. In gene, speech and handwriting data model, the feature extraction and reduction is an important step for efficient classification. These two steps require proper attention for selection and also require high processing time as compared to other data model like images. Because in image modality, the deep learning algorithm can be applied that can perform all process and automate the classification. As compared to these domains, the signal produces better and best results. Because the electroencephalogram (EEG) signal are taken from the brain using electrodes and it helps to observe the brain signals effectively and immediately as compared to the other data modals. Hence, in this paper, the wavelet transform will be used to decompose the signals and statistical features will be extracted from the transformed signal. Here, the satin bower bird optimization will be used for both type of wavelet selection and feature reduction process for final classification. The reduced feature set will be classified using Ensemble Neural Network type including InceptionV3, DenseNet, MobileNet, Xception, and NasNet) recently proposed for medical image classification. The whole process will be realized using MATLAB R2021a software and its performance will be evaluated in terms of Accuracy and is compared against Automated Tunable Q-wavelet transform performance. The proposed ensemble method, employing EEG signal processing and neural networks, achieved a 97% success rate in discriminating PD datasets, surpassing Convolutional Neural Network (CNN) and Machine Learning (ML) classifications (88% –92%). Utilizing MATLAB R2021a, its superiority over Q-wavelet transform was evident, signifying improved PD dataset discrimination. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Intelligent & Fuzzy Systems is the property of Sage Publications Inc. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Volltext ist im Gastzugang nicht verfügbar.