Treffer: OCC: An Automated End-to-End Machine Learning Optimizing Compiler for Computing-In-Memory.
Weitere Informationen
Memristive devices promise an alternative approach toward non-Von Neumann architectures, where specific computational tasks are performed within the memory devices. In the machine learning (ML) domain, crossbar arrays of resistive devices have shown great promise for ML inference, as they allow for hardware acceleration of matrix multiplications. But, to enable widespread adoption of these novel architectures, it is critical to have an automatic compilation flow as opposed to relying on a manual mapping of specific kernels on the crossbar arrays. We demonstrate the programmability of memristor-based accelerators using the new compiler design principle of multilevel rewriting, where a hierarchy of abstractions lowers programs level-by-level and perform code transformations at the most suitable abstraction. In particular, we develop a prototype compiler, which progressively lowers a mathematical notation for tensor operations arising in ML workloads, to fixed-function memristor-based hardware blocks. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)