Treffer: Image Analytics: A consolidation of visual feature extraction methods.

Title:
Image Analytics: A consolidation of visual feature extraction methods.
Source:
Journal of Management Analytics. Dec 2021, Vol. 8 Issue 4, p569-597. 29p.
Database:
Business Source Premier

Weitere Informationen

Revolutionary advances in machine and deep learning techniques within the field of computer field have dramatically expanded our opportunities to decipher the merits of digital imagery in the business world. Although extant literature on computer vision has yielded a myriad of approaches for extracting core attributes from images, the esotericism of the advocated techniques hinders scholars from delving into the role of visual rhetoric in driving business performance. Consequently, this tutorial aims to consolidate resources for extracting visual features via conventional machine and/or deep learning techniques. We describe resources and techniques based on three visual feature extraction methods, namely calculation-, recognition-, and simulation-based. Additionally, we offer practical examples to illustrate how image features can be accessed via open-sourced python packages such as OpenCV and TensorFlow. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Management Analytics is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)