Treffer: The Design Process for Google's Training Chips: TPUv2 and TPUv3.
Weitere Informationen
Five years ago, few would have predicted that a software company like Google would build its own computers. Nevertheless, Google has been deploying computers for machine learning (ML) training since 2017, powering key Google services. These Tensor Processing Units (TPUs) are composed of chips, systems, and software, all co-designed in-house. In this paper, we detail the circumstances that led to this outcome, the challenges and opportunities observed, the approach taken for the chips, a quick review of performance, and finally a retrospective on the results. A companion paper describes the supercomputers built from these chips, the compiler, and a detailed performance analysis [Jou20]. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Micro is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)