Treffer: Modeling time series data with semi-reflective boundaries.

Title:
Modeling time series data with semi-reflective boundaries.
Source:
Journal of Applied Statistics. Jul2019, Vol. 46 Issue 9, p1636-1648. 13p. 1 Diagram, 3 Charts, 3 Graphs.
Database:
Business Source Premier

Weitere Informationen

Time series data are increasingly common in many areas of the health sciences, and in some instances, may have natural boundaries serving as performance guidelines or as thresholds associated with adverse outcomes. Such boundaries may be labeled as semi-reflective, in that the time series values have an increased chance of returning towards middle levels as the boundaries are approached, but boundaries can still be breached. In this paper we review a model that was previously proposed for such data and we investigate its statistical properties. Specifically, this model consists of a third-order auto-regressive projection component, parameterized as a constrained linear combination of linear, flat, and quadratic trends, and an error term that uses a logistic regression model for its sign. We describe and compare a previously-proposed estimation method with a modified version thereof, using computer simulations, as well as data examples from heart monitoring and from a driving simulator. We find that the two methods tend to give different results, with the modified technique having lower bias and more accurate confidence intervals than the previously-proposed method. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Applied Statistics is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Volltext ist im Gastzugang nicht verfügbar.