Cite Them Right 11th edition - Harvard

Adesanya, M.A., Obasekore, H., Rabiu, A., Na, W.-H., Ogunlowo, Q.O., Akpenpuun, T.D., Kim, M.-H., Kim, H.-T., Kang, B.-Y. und Lee, H.-W. (2024) „Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach.“, Expert Systems with Applications, 252, S. N.PAG-0. doi:10.1016/j.eswa.2024.124126.

Chicago Manual of Style 17th edition (full note)

Adesanya, Misbaudeen Aderemi, Hammed Obasekore, Anis Rabiu, Wook-Ho Na, Qazeem Opeyemi Ogunlowo, Timothy Denen Akpenpuun, Min-Hwi Kim, Hyeon-Tae Kim, Bo-Yeong Kang, und Hyun-Woo Lee. „Deep Reinforcement Learning for PID Parameter Tuning in Greenhouse HVAC System Energy Optimization: A TRNSYS-Python Cosimulation Approach.“. Expert Systems With Applications 252 (5. Oktober 2024): N.PAG-0. https://doi.org/10.1016/j.eswa.2024.124126.

American Psychological Association 7th edition

Adesanya, M. A., Obasekore, H., Rabiu, A., Na, W.-H., Ogunlowo, Q. O., Akpenpuun, T. D., Kim, M.-H., Kim, H.-T., Kang, B.-Y., & Lee, H.-W. (2024). Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach. Expert Systems With Applications, 252, N.PAG-0. https://doi.org/10.1016/j.eswa.2024.124126

Modern Language Association 9th edition

Adesanya, M. A., H. Obasekore, A. Rabiu, W.-H. Na, Q. O. Ogunlowo, T. D. Akpenpuun, M.-H. Kim, H.-T. Kim, B.-Y. Kang, und H.-W. Lee. „Deep Reinforcement Learning for PID Parameter Tuning in Greenhouse HVAC System Energy Optimization: A TRNSYS-Python Cosimulation Approach.“. Expert Systems With Applications, Bd. 252, Oktober 2024, S. N.PAG-0, https://doi.org/10.1016/j.eswa.2024.124126.

ISO-690 (author-date, Deutsch)

ADESANYA, Misbaudeen Aderemi, Hammed OBASEKORE, Anis RABIU, Wook-Ho NA, Qazeem Opeyemi OGUNLOWO, Timothy Denen AKPENPUUN, Min-Hwi KIM, Hyeon-Tae KIM, Bo-Yeong KANG und Hyun-Woo LEE, 2024. Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach. Expert Systems with Applications. 5 Oktober 2024. Bd. 252, , S. N.PAG-0. DOI 10.1016/j.eswa.2024.124126

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.