Treffer: Understanding the impact of injection duration on the induced seismic hazard.
Weitere Informationen
Developing geoenergy technologies such as Enhanced Geothermal Systems (EGS) requires underground fluid injection operations, which, under certain conditions, can induce large-magnitude earthquakes. To mitigate the seismic hazard, various injection protocols have been proposed to regulate operational parameters. This study evaluates the impact of injection protocol on induced seismic hazard, using theoretical models, numerical simulations and field data. Within the theoretical framework, perturbed rock volume was inferred from the concept of triggering front that serves as a proxy for pressure perturbation, whereas numerical modeling captured the spatio-temporal evolution of pore-pressure. Our results indicate that short-duration injection protocols are likely characterized by lower seismic hazard, as they perturb smaller areas of pre-existing critically stressed faults. This decreases the likelihood of larger ruptures, that might propagate beyond the pressurized rock volume. Given the same (net) injected fluid volumes and geological conditions, the duration emerges as a key factor controlling the extent of the perturbed rock mass. The findings are further illustrated by the 2017 M L 5.4 Pohang earthquake, which was triggered by the hydraulic stimulation of the nearby EGS. Previously in 2006, the injection of roughly similar fluid volume in Basel induced an earthquake of magnitude M L 3.4. This difference in energy release is likely linked to the duration of the injection protocols, being approximately 600 days at Pohang and 6 days at Basel. Our findings highlight the importance of injection protocol, detailed subsurface characterization and real-time seismic monitoring of perturbed rock volumes to mitigate the seismic hazard during EGS developments. • Short-duration protocols for a given fluid volume likely reduce seismic hazard. • In the presene of large critically stressed faults, injection volume and duration control hazard. • Effective hazard control needs detailed subsurface data and real-time seismic monitoring. [ABSTRACT FROM AUTHOR]
Copyright of Geothermics is the property of Pergamon Press - An Imprint of Elsevier Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)