Treffer: Intelligent control of combined sewer systems using PySWMM—A Python wrapper for EPA's Stormwater Management Model.
Weitere Informationen
Wastewater utilities face competing priorities as they work to protect human health and water quality, and to maintain infrastructure in their communities. Budgetary constraints can be especially pronounced among small to medium-sized utilities. Utilities are increasingly turning to so-called intelligent water approaches as a cost-effective alternative to upgrading aging infrastructure. Intelligent water encompasses automated control and real-time decision support technologies and can be applied at scale to large and small utilities alike accommodating differences in needs, capabilities, and funds. Intelligent water upgrades can be designed to optimize existing conveyance, storage, and treatment during storms to help mitigate flooding and combined sewer overflows. The most promising real-time control algorithms coordinate control of upstream and downstream assets and are designed using urban hydrologic and hydraulic modeling software. The capabilities of legacy software, however, can sometimes inhibit the creation of sophisticated control algorithms. In this paper, we present PySWMM — an open-source Python wrapper developed for the EPA Storm Water Management Model (SWMM). PySWMM enables runtime interactions with the SWMM computational engine to flexibly read, modify system parameters, and control digital infrastructure during a simulation. Crucially, it allows modelers to easily combine SWMM with the rich set of scientific computing, big data, and machine learning modules found in the Python ecosystem. We highlight two real-world intelligent water case studies utilizing PySWMM in the cities of Cincinnati and Columbus, Ohio where it has helped to eliminate tens of millions of gallons of combined sewer overflows annually. • PySWMM is an open-source Python wrapper for EPA SWMM. • Embedding SWMM into Python's scientific computing ecosystem expands its capabilities. • Two utility CSO management applications leveraging PySWMM for real-time control and decision support are described. • Application results demonstrate how intelligent control can help reduce CSOs by tens of millions of gallons annually. [ABSTRACT FROM AUTHOR]
Copyright of Environmental Modelling & Software is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)