Treffer: Maximum wind power tracking based on cloud RBF neural network.

Title:
Maximum wind power tracking based on cloud RBF neural network.
Authors:
Source:
Renewable Energy: An International Journal. Feb2016, Vol. 86, p466-472. 7p.
Database:
GreenFILE

Weitere Informationen

Based on the mathematical model of Permanent magnet synchronous generator (PMSG), maximum wind power tracking control strategy without wind speed detection is analyzed and a controller based on cloud RBF neural network and approximate dynamic programming is designed to track the maximum wind power point. Optimal power-speed curve and vector control principles are used to control the electromagnetic torque by approximate dynamic programming controller to adjust the voltage of stator, so the speed of wind turbine can be operated at the optimal speed corresponding to the best power point. Cloud RBF neural network is adopted as the function approximation structure of approximate dynamic programming, and it has the advantage of the fuzziness and randomness of cloud model. Simulation results show that the method can solve the optimal control problem of complex nonlinear system such as wind generation and track the maximum wind power point accurately. [ABSTRACT FROM AUTHOR]

Copyright of Renewable Energy: An International Journal is the property of Pergamon Press - An Imprint of Elsevier Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)