Volltext-Artikel, eBooks und vieles mehr aus dem EBSCO Discovery Service

Das Gesuchte nicht gefunden? Schauen Sie in der Onleihe oder machen Sie einen Kaufvorschlag

Treffer 61 - 80 von 346

61

7 - Machine learning for analysis of geo-exploration data
Pour, Amin Beiranvand ; Harris, Jeff ; Zuo, Renguang
In Geospatial Analysis Applied to Mineral Exploration 2023:279-294

Buch
62

Calculating slope gradient variations in the submarine landforms by R and Python statistical libraries
Lemenkova, Polina ; Ocean University of China (OUC) ; China Scholarship Council (CSC), State Oceanic Administration (SOA), Marine Scholarship of China, Grant Nr. 2016SOA002, P.R.C.
ISSN: 1694-7398 ; MANAS Journal of Engineering ; https://hal.archives-ouvertes.fr/hal-02425689 ; MANAS Journal of Engineering, 2019, 7 (2), pp.99-113. ⟨10.6084/m9.figshare.11454768⟩ ; https://dergipark.org.tr/tr/pub/mjen/issue/50947/560487.

Python geomorphology data analysis statistics Mariana trench ACM: I.: Computing Metho...
Fachzeitschrift
63

Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP
Scavuzzo, Carlos Matias ; Scavuzzo, Juan Manuel ; Campero, Micaela Natalia ; et al.
In Infectious Disease Modelling March 2022 7(1):262-276

Fachzeitschrift
64

Modeling electric grid vulnerability induced by natural events using machine learning and geospatial analysis
Agarwal, Khushboo ; Pierce, Suzanne Alise, 1969- ; Mobley, William ; et al.

Grid resilience HAND model Flood modeling Power outage prediction Machine learning Geospatial analysis
Dissertation
65

Deep-Sea Trenches of the Pacific Ocean: a Comparative Analysis of the Submarine Geomorphology by Data Modeling Using GMT, QGIS, Python and R.
Lemenkova, Polina ; Ocean University of China (OUC) ; China Scholarship Council (CSC), State Ocean Administration (SOA), Marine Scholarship of China, People’s Republic of China (P. R. C.), Beijing, Grant #2016SOA002, 2016-2020

Geology Geology Geophysics Geography R programming Python programming Matlab
Konferenz
66

Towards augmented kernel extreme learning models for bankruptcy prediction: Algorithmic behavior and comprehensive analysis
Zhang, Yanan ; Liu, Renjing ; Heidari, Ali Asghar ; et al.
In Neurocomputing 21 March 2021 430:185-212

Fachzeitschrift
67

elapid: Species distribution modeling tools for Python
Anderson, Christopher B. ; orcid:0000-0001-7392-

biogeography species distribution mod... geospatial statistics machine learning python
E-Ressource
69

Generative AI with prompt engineering in construction: Enhancing predictive slope stability modelling for safe, sustainable, climate-smart mining practices
Kamran, Muhammad ; Faizan, Muhammad ; Wang, Shuhong ; et al.
In Geoscience Frontiers November 2025 16(6)

Fachzeitschrift
71

DEVELOPING AN AI TOOL FOR FOREST MONITORING: INTRODUCING SYLVAMIND AI.
KESKES, Mohamed I. ; NIȚĂ, Mihai D.
Bulletin of the Transilvania University of Brasov, Series II: Forestry, Wood Industry, Agricultural Food Engineering. 2024, Vol. 17 Issue 2, p39-54. 16p.

FOREST monitoring DEFORESTATION BIODIVERSITY CLIMATE change DEEP learning
Fachzeitschrift
72

Ciaran1981/geospatial-learn: Geospatial-learn 0.3 release
Ciaran

geospatial-analysis geospatial-processing remote-sensing machine-learning python
E-Ressource
73

Soil Study of Coastal Hyperspectral Data using K-means and LDA (Latent Dirichlet Allocation)
Shah, Dharambhai ; Shah, Pooja
2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA) Electronics, Communication and Aerospace Technology (ICECA), 2020 4th International Conference on. :1258-1262 Nov, 2020

Konferenz
74

Learning ArcGIS Pro : Create, Analyze, Maintain, and Share 2D and 3D Maps with the Powerful Tools of ArcGIS Pro
Tripp Corbin, GISP ; Tripp Corbin, GISP

Graphical user interface... Geographic information s...
E-Book
75

Computational International Relations What Can Programming, Coding and Internet Research Do for the Discipline?
Unver, H. Akin
All Azimuth: A Journal of Foreign Policy and Peace. July, 2019, Vol. 8 Issue 2, p157, 26 p.

Zeitschrift
76

Explainable Machine Learning for Geospatial Data Analysis : A Data-Centric Approach
Courage Kamusoko ; Courage Kamusoko

Geospatial data--Compute... Machine learning
E-Book
78

Geocomputation with Python
Michael Dorman ; Anita Graser ; Jakub Nowosad ; et al.

Python (Computer program... Geographic information s... Geospatial data--Compute...
E-Book
79

geodl: An R package for geospatial deep learning semantic segmentation using torch and terra
Maxwell, Aaron E. ; Farhadpour, Sarah ; Das, Srinjoy ; et al.
PLoS ONE. December 5, 2024, Vol. 19 Issue 12, pe0315127.

Fachzeitschrift
80

Learning ArcGIS Pro 2 : A Beginner's Guide to Creating 2D and 3D Maps and Editing Geospatial Data with ArcGIS Pro
Tripp Corbin, GISP ; Tripp Corbin, GISP

Geographic information s... Geospatial data--Compute... Graphical user interface...
E-Book

Filter